A Satake isomorphism in characteristic p

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A SATAKE ISOMORPHISM IN CHARACTERISTIC p

Suppose that G is a connected reductive group over a p-adic field F , that K is a hyperspecial maximal compact subgroup of G(F ), and that V is an irreducible representation of K over the algebraic closure of the residue field of F . We establish an analogue of the Satake isomorphism for the Hecke algebra of compactly supported, Kbiequivariant functions f : G(F ) EndV . These Hecke algebras wer...

متن کامل

On the Satake Isomorphism

In this paper, we present an expository treatment of the Satake transform. This gives an isomorphism between the spherical Hecke algebra of a split reductive group G over a local field and the representation ring of the dual group Ĝ. If one wants to use the Satake isomorphism to convert information on eigenvalues for the Hecke algebra to local L-functions, it has to be made quite explicit. This...

متن کامل

Spherical representations and the Satake isomorphism

Last updated: December 10, 2013. Topics: Motivation for the study of spherical representations; Satake isomorphism stated for the general case of a connected reductive group (taking Bruhat-Tits theory as a black box); interpretation (spherical principal series, Satake parameter, representations of dual reductive group); Satake made more explicit for the split case (key calculation); idea of pro...

متن کامل

The Satake Isomorphism for Special Maximal Parahoric Hecke Algebras

Let G denote a connected reductive group over a nonarchimedean local field F . Let K denote a special maximal parahoric subgroup of G(F ). We establish a Satake isomorphism for the Hecke algebra HK of K-bi-invariant compactly supported functions on G(F ). The key ingredient is a Cartan decomposition describing the double coset space K\G(F )/K. We also describe how our results relate to the trea...

متن کامل

Affine Grassmannians and the Geometric Satake in Mixed Characteristic

We endow the set of lattices in Qp with a reasonable algebro-geometric structure. As a result, we prove the representability of affine Grassmannians and establish the geometric Satake correspondence in mixed characteristic. We also give an application of our theory to the study of Rapoport-Zink spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Compositio Mathematica

سال: 2010

ISSN: 0010-437X,1570-5846

DOI: 10.1112/s0010437x10004951